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Abstract. Motivated by recent studies of inclusive neutrino nucleus processes and muon capture within
a correlated local Fermi gas model (LFG), we discuss the relevance of nuclear finite-size effects in these
reactions at low energy, in particular for muon capture. To disentangle these effects from others coming
from the reaction dynamics we employ here a simple uncorrelated shell model that embodies the typical
finite-size content of the problem. The integrated decay widths of muon atoms calculated with this shell
model are then compared for several nuclei with those obtained within the uncorrelated LFG, using in
both models exactly the same theoretical ingredients and parameters. We find that the two predictions
are in quite good agreement, within 1–7%, when the shell model density and the correct energy balance is
used as input in the LFG calculation. The present study indicates that, despite the low excitation energies
involved in the reaction, integrated inclusive observables, like the total muon capture width, are quite
independent of the fine details of the nuclear wave functions.

PACS. 23.40.Bw Weak-interaction and lepton (including neutrino) aspects – 25.30.-c Lepton-induced
reactions – 21.60.Cs Shell model

1 Introduction

In this paper we study the importance of nuclear finite-
size effects in inclusive muon capture reactions. The mo-
tivation for this investigation comes from the results of a
recent publication [1,2], where we have developed a model
which describes rather well the inclusive 12C(νµ, µ

−) and
12C(νe, e

−) cross-sections near threshold, and inclusive
muon capture by nuclei. This approach, which is an ex-
tension of the quasi-elastic inclusive electron scattering
model of [3], is based on a local Fermi gas (LFG), where
the simplicity of the model makes it possible to include a
great variety of effects into the reaction dynamics [4–8].
In particular, long-range nuclear correlations are taken
into account by computing the RPA polarization prop-
agator containing nucleonic and ∆(1232) degrees of free-
dom. All these effects are crucial for the correct analysis
of atmospheric-neutrino fluxes [9–11] and to describe the
recent neutrino experiments [12–17].

The results of [1], particularly those of muon capture,
indicate that for some kind of inclusive reactions the va-
lidity of the LFG can be extended to energies lower than
expected. Although the LFG leads to reasonable predic-
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tions for integrated quantities, at low energies it is not
possible to describe the shape of the differential neutrino
cross-section or muon capture width within this model. In
fact both the discrete and the continuum states of the final
nucleus, including giant resonances, contribute. However,
when one sums over all the final states, the information
about the fine details of the spectrum is lost and only
the global contribution remains. Therefore, for some in-
tegrated inclusive observables, the results depend mainly
on global quantities such as the correct energy balance or
the nucleon distribution. An example is the inclusive pion
capture model of [18,19]. The pioneering work of ref. [20]
is also worthy of mention in the context of comparing shell
model with Fermi gas for u-inclusive neutrino scattering.

The goal of this paper is to investigate whether finite-
nucleus effects can affect significantly the LFG results of
ref. [1] for inclusive muon capture. From the present cal-
culation it is possible to estimate an uncertainty of 1–7%
due to finite-size effects not taken into account in the LFG
calculation of [1]. There already exist microscopic calcu-
lations of neutrino-nucleus reactions and muon capture,
based on the RPA or large shell model (SM) basis [21–
27], and other approaches such as the relativistic shell
model [28] and the Green’s function method [29]. All of
them treat correctly the finite size of the system. However,
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from direct comparison of these models with the LFG it is
not possible to deduce the importance of the finite-nucleus
treatment. The reason is that such comparison should be
done between models embodying exactly the same nuclear
dynamics. Instead, a great variety of residual interactions,
shell model wave functions, current operators, Coulomb
effects, etc., have been used in these works, making it im-
possible to disentangle the impact of the finite size on the
different contributions.

Before such comparison be undertaken in a sophisti-
cated framework, it is convenient to understand the un-
correlated case. For this reason we have chosen to perform
this comparison with a simple model where the finite-size
effects can be easily recognized. Thus, here we consider
the extreme SM, i.e., single-particle states in a Woods-
Saxon (WS) potential, and we compare the results with
those obtained from a LFG model. We do not include long-
range correlations of RPA type or configuration mixing.
In addition we use the static form of the single-nucleon
charged current (CC), in order to simplify even more the
calculation and to draw cleaner conclusions. On the other
hand, within our simplified approach, we do not confine
ourselves to the single case of 12C, but make a more thor-
ough study of how finite-size effects vary with increasing
nuclear mass, by comparing the results for a set of closed-
shell nuclei: 12C, 16O, 40Ca, and 208Pb.

The present calculation represents a first-stage test
case to check the “equivalence” of LFG and shell mod-
els for some inclusive processes. We choose the µ-capture
reaction for this investigation since it involves low excita-
tion energies, the worst conditions for the LFG. Of course,
under these simplifications it makes no sense to compare
our results with the experimental data [30], nor it is the
intention of this work, since it was already done in ref. [1]
with the full model.

2 General formalism

2.1 Partial and differential width

Here we present the formalism to describe the inclu-
sive muon capture within our model. We use Bjorken
and Drell [31] conventions. We consider a negative muon
bound into an initial nucleus AZX, which decays into a final

nucleus A
Z−1Y plus a muon neutrino (not detected),

µ− + A
ZX −→ A

Z−1Y + νµ . (1)

The final nucleus can be in the discrete or in the contin-
uum. We assume that the initial muon is in an s-wave
state (normalized to one),

φ1s(r) = φ1s(r) =
R1s(r)√

4π
. (2)

We describe the wave function φ1s in a non-relativistic
framework by solving the Schrödinger equation for the
muon in the nuclear Coulomb potential, including finite-
size and vacuum polarization effects. The final neutrino

has four-momentum k′µ = (ε′,k′). The leptonic current
matrix element involved in the decay is then

〈νµ|jµ(x)|µ〉 = `µφ1s(x)e
ik′
·x , (3)

where xµ = (t, r) is the space-time coordinate, φ1s(x) is
the time-dependent muon wave function

φ1s(x) = φ1s(r)e
−iεt (4)

and ε is its initial energy (including the binding). Since
we treat the muon as non-relativistic, we describe its spin
by a Pauli spinor χ which is contained into the leptonic
vector `µ, defined by

`µ =

[

m′

V ε′

]1/2

uν(k
′)γµ(1− γ5)uµ(0) , (5)

where we have written the muon four-spinor as uµ(0) =
(χ, 0), i.e., corresponding effectively to a four-spinor with
momentum zero. This is equivalent to neglecting in the
following the initial muon momentum k = 0 in the kine-
matics —however, the full spatial dependence of the wave
function φ1s(r) is maintained in the matrix element, see
below. Finally in (5) V is the normalization volume of the
neutrino plane wave, and m′ its mass, that is set to zero
at the end of the calculation.

The S-matrix element relevant for the decay reac-
tion (1) is then

Sfi = −2πiδ(Ef − Ei − ω)
G√
2
`µ〈f |J̃µ(−k′)|i〉 , (6)

where |i〉 and |f〉 are the initial and final nuclear states,
with energies Ei and Ef , respectively, ω = ε− ε′ is the en-
ergy transfer, G = 1.1664×10−5 GeV−2 cos θc is the Fermi
coupling constant multiplied by the cosine of Cabibbo’s
angle, and we have introduced the effective current oper-
ator J̃µ, defined in coordinate space as

J̃µ(r) = Jµ(r)φ1s(r). (7)

Here Jµ(r) is the nuclear CC operator to be specified be-

low. Finally, J̃µ(q) is the Fourier transform

J̃µ(q) =

∫

d3reiq·rJ̃µ(r). (8)

The differential decay width can be computed easily.
Since the initial nucleus is unpolarized, the distribution
of neutrinos is independent of the angles, and the corre-
sponding angular integral gives a factor 4π.

At this point we have to distinguish two cases, de-
pending on the kind of final state |f〉 reached. In the first
case, the final nucleus is in a discrete state, that can be
the ground state or an excited state. The neutrino energy
takes discrete values fixed by energy conservation, and the
partial width for the transition i→ f is written as

Γi→f =
G2

2π

ε′

m
ηµνW i→f

µν (q) , (9)
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where q = |q|, and the usual leptonic tensor has been
introduced

ηµν = kµk′ν + kνk′µ −mε′gµν + iεµναβkαk
′

β (10)

for initial muon momentum kµ = (m, 0), where m is the
muon mass. We have also defined the muon-hadronic ten-
sor for the transition

W i→f
µν (q) =

∑

MfMi

〈f |J̃µ(q)|i〉∗〈f |J̃ν(q)|i〉 , (11)

where q = k−k′ = −k′ is the momentum transfer, we sum
over final spin components Mf , and average over initial
spins Mi.

In the second case, the final nucleus goes to the contin-
uum, above the one-particle emission threshold, and the
final neutrino energy ranges between 0 and the maximum
energy available minus the nucleon separation energy of
the final nucleus. The continuum spectrum of neutrinos is
described by the differential decay width

dΓc
dε′

=
G2

2π

ε′

m
ηµνW (c)

µν (q, ω) , (12)

where now the continuum hadronic tensor is defined as

W (c)
µν (q, ω) =

∑

fi

δ(Ef − Ei − ω)〈f |J̃µ(q)|i〉∗〈f |J̃ν(q)|i〉 .

(13)
Here a sum over final (continuum) states and an average
over initial spin is assumed.

The contraction between the leptonic and muon-
hadronic tensor is easily performed in a coordinate system
where the z-axis is in the q direction. We finally obtain
the following expression for the differential decay width:

dΓc
dε′

=
G2

2π
ε′2 (RC +RL − 2RCL +RT + 2RT ′) (14)

and a similar expression for the discrete partial widths,
where for simplicity the response functions have been in-
troduced as the following components of the hadronic ten-
sor [32,33]:

RC = W 00 , (15)

RCL = −1

2

(

W 03 +W 30
)

, (16)

RL = W 33 , (17)

RT = W 11 +W 22 , (18)

RT ′ = − i
2

(

W 12 −W 21
)

. (19)

The total (inclusive) width is obtained by integrating
and summing over the continuum and discrete, respec-
tively,

Γ =
∑

f

Γi→f +

∫ ε′
max

0

dΓc
dε′

dε′ . (20)

2.2 Multipole expansion

Since the shell model states have good angular momen-
tum, |i〉 = |JiMi〉, |f〉 = |JfMf 〉, it is usual to perform
analytically the sums over third components using the
Wigner-Eckart theorem. To this end one begins with the
following multipole expansion valid for the components of
any current operator in momentum space as a sum of op-
erators with good angular momentum of rank J (note that
the z-axis is in the q direction):

J̃0(q) =
√
4π

∞
∑

J=0

iJ [J ]ĈJ0(q) , (21)

J̃z(q) = −
√
4π

∞
∑

J=0

iJ [J ]L̂J0(q) , (22)

J̃m(q) = −
√
2π

∞
∑

J=0

iJ [J ]
[

ÊJm +mM̂Jm(q)
]

,m = ±1 ,

(23)

where we use the notation [J ] ≡
√
2J + 1, and in the last

equation the spherical components of the current vector
have been introduced J±1 = ∓(Jx ± Jy)/

√
2. The opera-

tors in this expansion are the usual Coulomb, longitudinal,
transverse electric and transverse magnetic operators, de-
fined by

ĈJ0(q) =

∫

d3rjJ(qr)YJ0(r̂)J̃0(r) , (24)

L̂J0(q) =
i

q

∫

d3r∇ [jJ(qr)YJ0(r̂)] · J̃(r) , (25)

ÊJm(q) =
1

q

∫

d3r∇× [jJ(qr)YJJm(r̂)] · J̃(r) , (26)

M̂Jm(q) =

∫

d3rjJ(qr)YJJm(r̂) · J̃(r) , (27)

where jJ is a spherical Bessel function and YJJm is a
vector spherical harmonic. Note that the above expansions
(21)-(23) are a direct consequence of the familiar plane-
wave expansion in spherical Bessel functions and spherical
harmonics, inside the Fourier transform (8).

Inserting the expansions (21)-(23) inside the hadronic
tensor (11), (13) we obtain

RC =
4π

2Ji + 1

∑

J

|CJ |2 , (28)

RL =
4π

2Ji + 1

∑

J

|LJ |2 , (29)

RCL =
2π

2Ji + 1

∑

J

(C∗JLJ + L∗JCJ) , (30)

RT =
4π

2Ji + 1

∑

J

(

|EJ |2 + |MJ |2
)

, (31)

RT ′ = − 2π

2Ji + 1

∑

J

(E∗JMJ +M∗

JEJ ) , (32)
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for the responses in the discrete, and a similar expression
for the continuum responses with the addition of a sum
over final states and a delta of energies

∑

f δ(Ef−Ei−ω).
The multipole coefficients in these sums are the reduced
matrix elements of the corresponding multipole operators

CJ(q) = 〈f‖ĈJ (q)‖i〉 , (33)

LJ (q) = 〈f‖L̂J (q)‖i〉 , (34)

EJ(q) = 〈f‖ÊJ (q)‖i〉 , (35)

MJ(q) = 〈f‖M̂J (q)‖i〉 . (36)

The values of J and Jf are related by angular-momentum
conservation |Ji − Jf | ≤ J ≤ Ji + Jf . In the particular
case of closed-shell nuclei, such as 12C, with Ji = 0, we
have Jf = J .

2.3 Weak charged current

In order to simplify the comparison with the LFG, in this
first stage we apply the above formalism to the CC Jµ =
V µ − Aµ in the static limit. This is not unreasonable for
the µ-capture reaction since all the momenta involved are
small. Thus, we only maintain the leading order in the
standard expansion of the matrix element of the vector
current

V µ(p′,p) = u(p′)

[

2FV
1 γ

µ + i
2FV

2

2M
σµνQν

]

u(p) (37)

in powers of p/M , p′/M , with M the nucleon mass, and
Qµ = (ω,q) the four-momentum transfer (Q2 = ω2 − q2).
Therefore, we take

V 0 ' 2FV
1 , (38)

V ' 0. (39)

In the case of the axial current

Aµ(p′,p) = u(p′)
[

GAγ
µγ5 +GPQ

µγ5
]

u(p) (40)

we expand taking into account that, from PCAC, the
pseudo-scalar form factor GP is of order O(M):

GP =
2M

m2
π −Q2

GA , (41)

and the leading-order term in the expansion of the axial
current becomes

A0 ' − GA

m2
π −Q2

(q · σ)ω , (42)

A ' GAσ −
GA

m2
π −Q2

(q · σ)q. (43)

Therefore, the total weak CC in the static limit that we
use in the present work is

J0 = J0
V − J0

P , (44)

J = −JA − JP (45)

and the different terms in these equations are defined be-
low. First-order terms in an expansion in powers of 1/M
not included in our calculation can give an appreciable
contribution, but the present approximation is enough for
our purposes of testing the equivalence between LFG and
shell models.

2.4 Multipole matrix elements of the current

The different multipoles of the vector, axial and pseudo-
scalar currents (J0

V , JA and JµP ), introduced in eqs. (44),
(45), are computed following the approach of ref. [34],
where the matrix elements of the electro-weak neutral
current were considered in the context of parity-violating
electron scattering. In the case of the vector current
we only consider the zero-th component to leading or-
der J0

V = 2FV
1 . Therefore, only the Coulomb multipoles

of this current enter our calculation. The reduced ma-
trix elements between single-nucleon wave functions, with
angular-momentum quantum numbers (lp, jp) and (lh, jh),
are given by

〈p‖ĈJ (q)‖h〉 = 2F V
1 P

+
lp+lh+J [J ] aJIJ(q). (46)

Here we use the notation P+
n for the parity function (= 1

if n is even and 0 if n is odd), and we have defined the
function IJ(q) as

IJ(q) =

∫ ∞

0

dr r2jJ(qr)R
∗

p(r)Rh(r)φµ(r) (47)

which contains the dynamical information on the nuclear
transition and the muon wave function. Finally, the cou-
pling coefficient aJ is defined in terms of a three-j coeffi-
cient:

aJ ≡
(−1)jp+1/2[jp][jh]√

4π

(

jp jh J
1
2 − 1

2 0

)

. (48)

In the case of the axial current we only consider the space
components JA = GAσ (we neglect the time component
to leading order) so only the longitudinal and transverse
(electric and magnetic) matrix elements enter:

〈p‖L̂AJ (q)‖h〉 = iGAP
+
lp+lh+J+1

aJ
[J ]

×
[

(κp + κh − J)IJ−1(q)

+ (κp + κh + J + 1)IJ+1(q)
]

, (49)

〈p‖ÊA
J (q)‖h〉 = −iGAP

+
lp+lh+J+1

aJ
√

J(J + 1)[J ]

×
[

(J + 1 + κp + κh)JIJ+1(q)

+ (J − κp − κh)(J + 1)IJ−1(q)
]

, (50)

〈p‖M̂A
J (q)‖h〉 = GAP

+
lp+lh+J

aJ [J ]
√

J(J + 1)

× (κp − κh)IJ (q) , (51)

where we use the notation κp = (−1)jp+lp+ 1

2 (jp+
1
2 ). Note

that the longitudinal and electric multipoles have abnor-
mal parity, i.e., lp+ lh+ J = odd as expected for an axial
current.
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In the case of the pseudo-scalar current JµP =

− GA
m2
π−Q

2 (q · σ)Qµ, the multipoles can be related to the

longitudinal components of the axial current J zA = GAσ·q̂.
Using expansion (22) for the longitudinal current we have
for the zero-th component

J0
P = − ωq

m2
π −Q2

JzA (52)

=
ωq

m2
π −Q2

√
4π

∑

J

iJ [J ]L̂AJ0. (53)

Comparing with expansion (21) we obtain that the
Coulomb operators of the pseudo-scalar current are pro-
portional to the longitudinal multipoles of the axial cur-
rent,

ĈP
J0 =

ωq

m2
π −Q2

L̂AJ0 (54)

and the same relation holds for the matrix elements. Since
the spatial part of the pseudo-scalar current is propor-
tional to q, it has no transverse components. Only the
longitudinal multipoles enter, that are again proportional
to the axial ones

L̂PJ0 = − q2

m2
π −Q2

L̂AJ0. (55)

and a similar relation between the corresponding matrix
elements.

Finally, note that in the present static approximation,
where there are no transverse multipoles for the vector
current, the response function RT ′ = 0, because only the
interference between electric and magnetic multipoles of
the vector and axial current, respectively (and vice versa)
would enter eq. (32).

2.5 The local Fermi gas

In the local Fermi gas model we first compute the decay
width ΓFG[ρP , ρN ] for a muon at rest inside a Fermi gas
with constant proton and neutron densities

ρP = k3
FP /3π

2, ρN = k3
FN/3π

2, (56)

where kFP and kFN are the Fermi momenta of protons
and neutrons, respectively. With the charged current (44),
(45), the response functions (15)-(19) are computed in this
model using the formalism of [1,34]. The final result can
be written simply as

dΓFG
dε′

=
G2

π
ε′2

[

4F 2
1V +G2

A(3 + C2
P − 2CP )

]

R0 , (57)

where we have defined the following factor coming from
the pseudo-scalar current:

CP ≡
mε′

m2
π −Q2

, (58)

and the function R0 is related to the imaginary part of
the Linhard function [1,34]

2R0 = − 1

π
ImU =

M2

2π2q
θ(εFP − ε0)(εFP − ε0). (59)

Here we have defined

ε0 = Max

{

εFN − ω,
1

2M

(

Mω

q
− q

2

)2
}

(60)

and εFP = k2
FP /2M is the Fermi energy of protons, and

εFN = k2
FN/2M for neutrons. The LFG width is then

obtained by inserting the proton and neutron densities,
ρP (r) and ρN (r), of the finite-size nucleus into eq. (56)
and averaging with the muon density [1]

ΓLFG =

∫

d3r|φµ(r)|2ΓFG[ρP (r), ρN (r)]. (61)

An important input for the LFG is the experimental
Q-value for the reaction (1)

Q =M( A
Z−1Y )−M(AZX) = ωmin (62)

which is the minimum value allowed for the energy trans-
fer ω. In order to account for this value in the Fermi gas,
we substitute ω by ω−Q, since part of the energy ω is em-
ployed in producing the final nucleus. In this way we treat
correctly the energy balance, which is important for de-
scribing the experimental muon capture width [1]. When
different densities are used for protons and neutrons, es-
pecially in the case of 208Pb, there is a gap,

εgap = εFN − εFP , (63)

between neutron and proton Fermi energies, that has to
be considered also in the energy balance by substituting

ω −→ ω + εgap −Q. (64)

3 Results

In this section we present results for a set of closed-
shell nuclei 12C, 16O, 40Ca, and 208Pb. In the extreme
shell model the initial and final nuclear wave function
are described as Slater determinants constructed with
single-particle wave functions that are solutions of the
Schrödinger equation with a Woods-Saxon potential

V (r) = V0f(r,R0, a0)− VLS
2l · σ
r

df(r,R0, a0)

dr
+ VC(r),

(65)
where

f(r,R0, a0) =
1

1 + e(r−R0)/a0

(66)

and VC(r) is, for protons, the Coulomb potential of a
charged sphere of charge Z − 1 and radius RC , and it
is equal to zero for neutrons. The parameters of the po-
tential are commonly fitted to the experimental energies
of the valence shells or the charge radius. In the present
case of muon capture we fit the experimental Q-value (62)
for the decay reaction (1). In the shell model, the energy
difference between hadronic final and initial states is com-
puted as the difference between the corresponding shells

ω = εp − εh , (67)
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Table 1. Parameters of the Woods-Saxon potentials used
in 12C, 16O and 40Ca for protons (P ) and neutrons (N). The
units are MeV for Vi, and fm for a0 and r0. The reduced radius
parameter r0 is defined by R0 = r0A

1/3. The Coulomb radius
is chosen as RC = R0.

V P
0 V P

LS V N
0 V N

LS r0 a0

12C WS1 −52.38 −20.30 −50.85 −24.11 1.25 0.57
WS2 −62.38 −3.20 −50.85 −18.40
WS3 −62.38 −3.20 −38.30 −3.15

16O WS1 −52.50 −0.60 −52.50 −0.60 1.27 0.53
WS2 −52.50 −7.00 −42.80 −6.54
WS3 −50.00 0.00 −50.00 0.00

40Ca WS1 −50.45 −4.83 −48.66 −5.20 1.25 0.53
WS2 −57.50 −11.11 −55.00 −2.30
WS3 −57.50 −11.11 −53.00 −5.10

Table 2. Parameters of the Woods-Saxon potentials of 208Pb
for protons (P ) and neutrons (N). Note that we use different
radius parameters for the central and spin-orbit parts of the
potential. The units are MeV for Vi, and fm for ai and ri. The
reduced radius parameters ri are defined by Ri = riA

1/3. The
Coulomb radius is chosen as RC = R0.

V0 VLS r0 a0 rLS aLS

WS1 P −60.4 −7.45 1.26 0.79 1.21 0.59
N −46.9 −5.64 1.21 0.66 1.17 0.64

WS2 P −60.4 −6.75 1.26 0.79 1.22 0.59
N −43.5 −6.08 1.26 0.66 1.17 0.64

where εp and εh are eigenvalues of the Schrödinger equa-
tion for particles (neutrons) and holes (protons), respec-
tively. Therefore, the Q-value (62) is obtained in this
model as the energy difference between the first unoc-
cupied neutron shell and the last occupied proton shell,
corresponding to the transition of a valence proton to a
neutron above the Fermi level. This makes only one condi-
tion for fixing the several parameters of the potential (65).
Wherever possible, we set the remaining parameters of the
potential to values similar to the ones used in other studies
like those of refs. [18,34,35]. In our calculation we use dif-
ferent sets of parameters, denoted WS1, WS2 and WS3,
shown in table 1 for 12C, 16O, 40Ca, and in table 2 for
208Pb.

The only states relevant for µ-capture are the occupied
proton holes and the neutron particles above the valence
shell. In the discrete sector several transitions are possible
with fixed excitation energies. The single-particle energies
of the last occupied proton shell and first unoccupied neu-
tron shell obtained with the potentials of tables 1, 2 are
shown in table 3. The Q-value corresponds to the transi-
tion P −→ N in table 3, with an energy difference

Q = ε(N)− ε(P ) (68)

which is also shown in table 3, together with the exper-
imental value Qexp in the last column. The number of
discrete neutron states is finite. Above the last discrete
neutron state, the next allowed transitions are to the

Table 3. Single-particle energies in MeV used in the fit of the
Q-value for µ-capture (the experimental values are shown in
the last column).

Nucleus WS1 WS2 WS3 Exp.

12C P1p3/2 −15.96 −18.38 −18.13
N1p1/2 −2.08 −4.50 −4.25
Q-value 13.88 13.88 13.88 13.880

16O P1p1/2 −15.31 −12.77 −13.76
N1d5/2 −4.39 −1.84 −2.83
Q-value 10.92 10.93 10.93 10.931

40Ca P1d3/2 −8.33 −8.78 −8.78
N1f7/2 −6.51 −6.95 −6.95
Q-value 1.83 1.83 1.83 1.822

208Pb P3s1/2 −8.19 −8.19
N2g9/2 −2.68 −2.68
Q-value 5.51 5.51 5.512

Table 4. Integrated width in units of 105 s−1 for the different
nuclei and Woods-Saxon potentials, compared with the LFG
results using the corresponding charge densities. The discrete
contribution of the shell model is shown in the first column.

Discrete Total LFG %

12C WS1 0.3115 0.4406 0.4548 3.2
WS2 0.3179 0.4289 0.4360 1.7
WS3 0.2746 0.5510 0.4732 −14.1

16O WS1 1.113 1.282 1.360 6.1
WS2 0.590 1.118 1.392 24.3
WS3 1.154 1.332 1.387 4.1

40Ca WS1 29.10 37.12 36.73 −1.1
WS2 27.79 33.79 34.90 3.3
WS3 26.28 32.73 35.03 7.0

208Pb WS1 215.6 390.3 399.4 2.3
WS2 266.8 467.4 439.5 −5.9

continuum. The continuum neutron states are obtained
by solving the Schrödinger equation for positive energies.
More details on the continuum solutions can be found in
refs. [18,34,35].

In order to compare with the LFG, it is important to
use as input the proton and neutron densities obtained in
the corresponding shell model, by summing over occupied
states as follows:

ρP (r) =
∑

protons

2j + 1

4π
|Rnlj(r)|2, (69)

where Rnlj(r) are the radial wave functions, and a similar
expression for neutrons.

The shell model calculation has been checked by com-
parison with the factorized plane-wave impulse approxi-
mation (PWIA) [36]. In this approximation there is no
final-state interaction and hence the final neutron states
are plane waves. The transition matrix elements appear-
ing in the hadronic tensor (13) are computed trivially in
terms of the product of a single-nucleon current matrix
element times the Fourier transform of a nuclear overlap
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Fig. 1. Proton and neutron densities of 12C for the several WS
potentials used in this work.

function of the missing momentum, in a way which is
similar to the analysis of exclusive (e, e′p) reactions [37]
(but this time the nuclear overlap function includes the
bound-muon wave function). As a consequence, the exclu-
sive hadronic tensor factorizes as the product of a single-
nucleon hadronic tensor times a partial-momentum distri-
bution, and the calculation is straightforward in the shell
model. For the present case an additional integration and
a sum over initial states is needed since we are interested in
the inclusive case, similar to the factorized PWIA in (e, e′)
introduced in [36]. The PWIA can be also approached with
our multipole-expansion code by setting to zero the WS
potential in the final states. This allows us to check the
multipole-expansion calculation and, at the same time, to
fix the number of multipoles in the sum over J , eqs. (21)-
(23). The differences with the factorized calculations are
negligible when we include up to five multipoles.

In table 4 we show results for the integrated inclusive
widths for the four nuclei and for the different models used
in this work. For each one of the WS parameterizations we
show in the second column the contribution to the width
from the discrete final neutron states, while in the third
column we show the total width (discrete + continuum).
The LFG results are shown in the fourth column, and
for comparison we show the percentual relative difference
between LFG and WS in the last column. Next we discuss
the results obtained for each one of the nuclei studied in
this work.
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Fig. 2. Differential SM width of 12C to the continuum (left
panels) compared to the LFG, and partial widths to the dis-
crete states (right panels), as a function of the neutrino energy,
for the different WS potentials considered in this work.

3.1 12C

In table 4 we can see that, in the case of WS1 and WS2,
the LFG and WS results for 12C are quite similar, differing
only in ∼ 2–3%. In the case of WS3 the differences are
larger, around 14%.

All the WS potential parameters have been fitted to
the experimental Q-value (68), which, in the SM, is the
difference between the neutron p1/2 and proton p3/2 ener-
gies. Among all the potentials, WS1 is the more realistic
since it also fits the proton and neutron separation en-
ergies of 12C and give reasonable masses for the ground
states of the 13N and 13C nuclei. When we use similar pa-
rameters for protons and neutrons, like in WS1, we need
a large spin-orbit splitting in order to fit the experimental
Q-value. In the case of the potential WS2 we use different
parameters for protons and neutrons: The proton well is
similar to the one of ref. [34], that is more attractive than
WS1, with small spin-orbit strength. The neutron param-
eters are similar to WS1. Finally, in WS3 we have used a
small neutron spin-orbit splitting, as for protons, but we
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Fig. 3. The same as fig. 1 for 16O.

had to make the neutron well much less attractive than for
protons. Apart from changing the single-particle energies,
the effect of modifying the WS potential can be appreci-
ated in the proton and neutron densities shown in fig. 1.
For more attractive potentials the nucleus becomes denser
in the interior. For this reason, the WS3 neutron density
turns out to be the smallest one, while the proton density
is around 3/2 the neutron one. Hence, the LFG results
are worse for very different neutron and proton densities.
In this situation, the proton and neutron Fermi momenta
(56) are clearly different, leading to a gap between proton
and neutron energies, (63), which, in this case, is negative,
since the density is smaller for neutrons, and εFN < εFP .
Therefore, a proton near the Fermi surface can decay to a
neutron above the neutron Fermi surface with an energy
decrement. This is an unrealistic situation, since precisely
in this case the neutrons are less bound than protons in
the SM, and therefore lie at higher energies. Another ar-
gument to disregard this case is the well-known property
of closed-(sub)shell nuclei such as 12C, for which the neu-
tron and proton densities should be similar. Note that in
all cases the gap between the N and P Fermi species has
been taken into account in the energy balance by the re-
placement (64).

In fig. 2 we compare the SM results for the differential
width to the continuum with the LFG distribution for the
different WS parameters (left panels). The shapes of both
distributions are completely different. The differences are
more apparent for the WS1 potential, where there is a
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Fig. 4. The same as fig. 2 for 16O.

very high and sharp neutron resonance in the SM spec-
trum. The partial widths to the discrete states are shown
in the right panels of fig. 2. Considering these differences
in shape between the LFG and the SM, it is a very no-
table result that the integrated widths (adding the discrete
states) take similar values in both models as was shown in
table 4. This outcome agrees with the findings of ref. [38],
where the same problem was addressed in the context of
inelastic electron scattering on nuclei.

The biggest contribution to the width comes in all the
cases from the transition to the ground state, and its mag-
nitude does not depend very much on the potential, since
in the transition p3/2 → p1/2 the wave functions in the ini-
tial and final states are similar across the different poten-
tials. Note also that there are transitions to final discrete
states that lie in the continuum (particularly, transitions
from the 1s shell). These states will contribute to the giant
resonances after an appropriate treatment of the residual
interaction (such as in the RPA). Under the light of the
present preliminary study and the results of ref. [1] one
expects that the inclusion of the RPA does not change
too much our conclusions and the total integrated width
be similar for correlated LFG and SM.
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Fig. 5. The same as fig. 1 for 40Ca.

3.2 16O

In the case of 16O the integrated widths computed in the
LFG are also very close, ∼ 4–6%, to the SM results with
the potentials WS1 and WS3 (see table 4). The worst
results are obtained for the WS2 parameterization; the
corresponding width is 24% of the SM one. This can also
be understood in terms of what was said for the case of 12C
above, by looking at the 16O densities shown in fig. 3. The
case of WS2 is the only one where the protons are more
bound than the neutrons, hence the N -density is smaller
than the P -density inside the nucleus, which is again an
unrealistic situation because one expects the opposite in
a closed-shell nucleus such as 16O.

We should add that the 16O nucleus is delicate in the
sense that the experimental Q-value of 10.93 MeV is too
large to be fitted by the WS parameters found in the litera-
ture [18,34]. In fact, in the SM theQ-value is the difference
between theN1d5/2 and P1p1/2 energies (see table 3). The
effect of the spin-orbit potential is to increase ε(p1/2) and
to decrease ε(d5/2), that is, it goes to reduce the Q-value.

(The opposite happens for 12C, where the Q-value is the
difference between the Np1/2 and Pp3/2 energies. Hence,
the spin-orbit goes to increase the Q-value.) Therefore, to
make that value as large as 11 MeV one needs a small
spin-orbit potential, as in WS1, or to raise the neutron
well with respect to the proton well, as in WS2, at the
cost of making the neutrons less bound than protons. The
first option is preferred because it allows for similar pro-
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Fig. 6. The same as fig. 2 for 40Ca.

ton and neutron densities. Precisely the third parameter-
ization WS3 has been chosen with VLS = 0 to maximize
the difference between these two shells.

The differential and partial widths of 16O for the three
WS potentials are shown in fig. 4. In the three cases the
main contribution comes from the discrete spectrum (see
also table 4). Since VLS = 0 for WS3, the dominant con-
tribution comes from transitions from the 1p to the 1d
shell.

3.3 40Ca

The LFG results improve when the mass of the nucleus
increases as in the present case of the nucleus 40Ca. In
fact, from table 4 we see that for this nucleus the LFG
integrated width is within 1% of the SM result for WS1,
and 3% and 7% in the other two cases. This improvement
was expected because the Fermi gas description of the
nucleus should work better for heavier nuclei. In the case
of WS2 andWS3 the proton parameters have been fixed to
the typical values used in the literature, and we have fitted
the neutron ones. Since here the experimental Q-value is
small, Q = 1.8 MeV, one does not need to change too
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Fig. 7. The same as fig. 1 for 208Pb.

much the typical neutron parameters. In the case of WS1
we have tried to maintain the P andN parameters similar.
The proton and neutron densities are close in all cases, as
shown in fig. 5, and the proton levels always lie above the
neutron ones.

The neutrino spectrum shown in fig. 6 presents a more
complex structure than the lighter nuclei discussed above.
More potential resonances arise and the discrete spectrum
presents more lines distributed along the allowed energy
region.

3.4 208Pb

Finally we discuss the results for the closed-shell heavy
nucleus 208Pb. In table 4 we present integrated widths
only for two sets of potential parameters, WS1 and WS2.
This is the only case where we use different radius pa-
rameters for protons and neutrons and also for the cen-
tral and spin-orbit parts of the potential, see table 2. In
both cases the LFG results are close, within 3 and 6%,
to the SM ones. The Q-value, 5.5 MeV, is close to the
N2g9/2 and P3s1/2 energy difference of typical parame-
terizations [34,39]. Only small variations of these parame-
terizations found in the literature are allowed if one wants
to maintain the ordering of the energies around the Fermi
level. Also only small variations are needed to fit the ex-
perimental Q-value. In the present case the treatment of
asymmetric nuclear matter is essential, because the proton
and neutron densities, shown in fig. 7, are clearly different.
Therefore, the correct treatment of the gap in the energy
balance, eqs. (63), (64), is needed to obtain the results
of table 4. Moreover, in this case the neutrino spectrum
shown in fig. 8 shows also an improved resemblance be-
tween the LFG and SM (although numerous potential res-
onances appear), even taking into account the distribution
of the discrete spectrum.
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Fig. 8. The same as fig. 2 for 208Pb. In this case we show the
discrete contributions in units of 104 s−1 in the same panel as
the continuum one.

4 Conclusions

In this paper we have estimated the magnitude of the
finite-nucleus effects on inclusive muon capture, aiming at
quantifying the uncertainty of the LFG results of ref. [1]. It
is not possible to disentangle these effects by comparison
with the highly sophisticated RPA or shell models existing
in the literature due to the different theoretical ingredients
embodied in them.

To know how much the LFG is modified by finite-size
effects, one would need a finite-nucleus model with ex-
actly the same input as the LFG, in order to make the
comparison meaningful. Obviously this would be a draw-
back precisely because one wants to use the LFG due to
its simplicity, in order to include very complex dynamical
effects hard to incorporate in finite-nucleus treatments.
Therefore, before using a very sophisticated model, it is
convenient to see what happens in the uncorrelated case.

In this paper we have focused on a simple shell model
without nuclear correlations, but that contains the rele-
vant information about the finite nuclear structure, and
we have compared it with the uncorrelated LFG using
the same input. In particular, the SM proton and neutron
densities have been used in the LFG calculation. We have
applied both models to a set of closed-shell nuclei: 12C,
16O, 40Ca, and 208Pb. In the SM we fit the experimental
Q-value of the decay, while the same value is used to cor-
rect the energy transfer in the LFG, taking into account
also the gap between neutron and proton Fermi energies.
As expected, the neutrino spectrum is very different in
both models, in particular the LFG cannot account for
the resonances and discrete states. However, in the case
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of the lighter nuclei, 12C and 16O, the SM and LFG results
for the integrated width are close —within 3–6%— for WS
parameters with similar neutron and proton densities, but
the results are somewhat different, within 14–24%, for the
disregarded cases in which the protons lie below the neu-
trons. For the medium and heavy nuclei, 40Ca and 208Pb,
the integrated widths are always very close, within 1–7%.
The final neutrino spectrum of the LFG becomes more
similar to the SM, including the discrete part, for heavier
nuclei. Under the assumption that RPA correlations and
finite-size effects are somewhat decoupled for integrated
inclusive observables, the present results can explain why
the LFG results of ref. [1] describe so well the experimental
data.
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